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Forced Convect ion in a Circular Pipe with a Partially Filled 
Porous Medium 
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3610 Collins Ferry Rd., Morgantown, WV 26509-0880 

A study of  forced convect ion in a circular pipe with a part ial ly filled porous medium was 

numerical ly  investigated. The Br inkman-Forchhe imer  extension of  the Darcy model  was used 

to analyze the and temperature distr ibut ion in the porous medium. Our study includes two types 

of  porous layer conf igura t ions :  (1) a layer attached at the tube wall extending inward towards 

the centerline and (2) a layer at the centerline extending outward.  The effect of  several para- 

meters, such as Darcy number,  effective viscosity, effective thermal conductivity,  and inertia 

parameter,  as well as the effect of  geometric parameters, were investigated. 
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Nomenc la ture  
Roman Symbols 
CF : Forchhe imer  coefficient 

¢p : Specific heat at constant  pressure 

Da : Darcy number  

F : Forchhe imer  number  

/To : Modified Bessel function of  the first kind 

of  order zero 

/1 : Modified Bessel function of  the first kind 

of  order one 

k : Thermal  conduct ivi ty  

key/ ~ Effective thermal conduct ivi ty  of  the po- 

rous layer 

K : Permeabil i ty of  the porous  medium 

K0 : Modified Bessel function o f  the second 

kind o f  order zero 

KI i Modified Bessel function o f  the second 

kind of  order one 
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Nu : Nusseh number  

p Z Pressure 

q ~ Heat flux 

r ,  ? : Non-d imens iona l  radial  coordinate  

R i Radius of  the circular pipe 

R0 : Locat ion of  the interface between the fluid 

and the porous medium 

Rk : Rat io  o f  the effective thermal conduct ivi ty  

of  the porous layer to the thermal conduc- 

tivity of  the fluid 

Ru i Rat io  of  the effective viscosity of  the po- 

rous layer to the viscosity of  the fluid 

T*  : Tempera ture  

Tm ~ Average temperature 

Tw : Wall  temperature 

u, ~ : Non-d imens iona l  axial velocity compo-  

nent o f  the fluid 

um : Average velocity 

x : Non-d imens iona l  axial coordinate  

Greek Symbols 
/.t : F luid  viscosity 

/-tell ~ Effective viscosity of  the porous  layer 

p : Fluid density 
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0 : Non-d imens iona l  temperature 

Subscripts 
e l f  : Effective values 

m " Average values 

w ~ Values at the wall 

Superscript 
* : Dimensional  variables 

I. Introduction 

The study of  the characteristics of  heat and 

momentum convect ion in porous media has in- 

creased significantly due to its relevance in a var- 

iety of  technology,  including the design of  cera- 

mic barrier filter systems exposed to high tem- 

peratures (Ahmadi  and Smith, 2002a, 2002b, 

[998 : Back et al., 1997), superadiabat ic  combus-  

tion (Jeong et al., 1998), fuel cell applicat ions 

(Nguyen and He, 2002: He et al., 2000), and 

membrane science and technology (Mckenzie et 

al., 1994 : Webber  et al., 1990). 

Forced-convec t ion  heat transfer in a channel or 

a tube partially filled or saturated with porous 

media is of  mathematical  and practical interest. 

Kaviany (1985) analyzed heat transfer in a chan- 

nel filled with porous media using an equat ion 

based on the Br inkman-extended Darcy flow mo- 

del. Vafai and Kim (1989) reported an exact solu- 

tion of  that equat ion,  including inertia (Brink- 

man Forchheimer  extended Darcy equat ion)  lbr 

convective heat transfer in a channel with uniform 

wall heat flux under the boundary  layer assump- 

tion. Analytic  solutions of  the Br inkman-For -  

chheimer equat ion and associated heat transfer 

equat ion for a plane channel were reported by 

Nield et a1.(1996), where they investigated the 

effect of  several parameters, including effective 

viscosity, Darcy number,  and Forchheimer  num- 

ber. 

Poul ikakos and Kazmierczak (1987) investigat- 

ed the forced convect ion in a channel and a cir- 

cular pipe partially filled with porous medium. 

Specifically, they studied the effects of  the porous 

layer thickness, Darcy number,  and effective ther- 

mal conduct ivi ty  of  the porous media on heat 

transfer through exact solutions of  the Brink- 

man-extended Darcy and energy equations.  Their  

analysis, however,  was limited to the case where 

the effective viscosity of  the porous medium 

was equal  to the fluid viscosity. Poul ikakos  and 

Renken (1987) also investigated the tbrced con- 

vection in a channel,  including the effects of  

flow inertia, variable porosity, and friction. A 

similar solution was obtained by Ethier and 

Kamm (1989) for flow in a circular pipe part ial ly 

filled with porous medium. 

In this paper, we examined the effect of  several 

parameters on forced convect ion in a tube par- 

tially filled with a porous medium. Since there is 

no analytic solution for the Br inkman-Fo rch -  

heimer extension of  Darcy momentum equat ion 

in a circular pipe, we performed a numerical  cal- 

culation. 

ill particular,  we have investigated the effects 

of  porous layer configurat ion ; a layer attached 

to the tube wall extending inward toward the 

center line (Case D, and a layer extending out- 

ward from tile center line (Case i l ) .  The effects 

of  other parameters, such as Darcy number,  the 

porous layer thickness, effective viscosity, effec- 

tive thermal conduct ivi ty  of  the porous media, 

and Forchheimer  number  were also investigated. 

A finite difference method was adopted with the 

boundary  condi t ions  of  both constant wall tem- 

perature (Dirichlet  type) and constant  wall heat 

flux (Neumann type).  

2. Formulation 

Schematics of  the physical model  and coordi-  

nate system are shown in Fig. 1 (a) for the Case I 

and in Fig. l (b)  for the Case !1. The  location 

of  the interface between the fluid and the po- 

rous medium is R and the pipe radius is R0. The 

(a! Ch) 

Fig. ! Schematics of the physical model and coordi- 
nate system : (a) outer porous layer (Case l) 

and (b) inner porous layer (Case If) 
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porous layer has an effective viscosity /x~,-: and 

an effective thermal conductivi ty ke:i, while the 

fluid has viscosity /x and thermal conductivi ty k. 

For the flow system shown in Fig. 1, a steady, in- 

compressible, hydrodynamic  and thermal laminar  

flow is assumed• 

The governing equat ions for the velocity and 

temperature fields in tile fluid layer can be written 

in dimensional  form as 

db_  d ( d.L  
dx* r* dr* \l~r* d r * /  

(I) 

d T *  _ 1 d ( kr*  d T *  ] 
pcpu* dx* r* dr* dr* / (2) 

The Br inkman-Forchhe imer  extended Darcy and 

energy equat ions are used to the flow in the 

porous region and are given by 

dp I d (r*  f l u*]  
dx*- /x~::  r* dr* dr* / (3) 

Ig 1 2 " -  CFp bt,2 
K v 'K  

d T *  1 d ( r .  d T * ]  
tOCpgg * - -  : ke f i  V* dx* dr* dr* / (4) 

In deriving Eq. (4), a homogeneous isotropic 

porous medium is assumed. At any point in the 

porous medium, the solid matrix is assumed to be 

in thermal equi l ibr ium with the fluid filling the 

pores (Bejan, 1995). Heat conduction in the axial 

direction is neglected under a low Peclet number 

assumption. Note that the effect of thermal dis- 

persion is not considered in the energy equation,  

since we take into account the effect of  thermal 

dispersion by modifying the thermal conductivi ty 

(Vafai and Kim, 1989: Nield et al., 1996). 

The appropriate  boundary  condi t ions  for the 

momentum and energy equat ions (Eqs. (1) 

(4)) are given : 

At r * = 0 ,  

d12" - -0  and d T *  = 0  for Cases I and II ('~) 
dr* dr* -' 

At r*=Ro,  

d T *  _ qw tbr Case 1 u * = 0 ,  T * =  Tw or dr* k~:/ 
(0) 

d T *  q~ 
u * = 0 ,  T * = T w  or - for Case II 

d r  k 

In addit ion to the condi t ions  

velocity and temperature at the 

lowing matching condi t ions  at 

interlace ( r * = g )  are imposed 

of cont inui ty  of 

interface, the fol- 

the f lu id /porous  

du  * dzt * 
t~ dr* =t~:: dr* 

k dT_* =k~N d T *  
dr* dr* 

(7) 

These boundary  condi t ions  represent the conti- 

nuity of shear stress and heat flux at the interface. 

By introducing the non-d imens iona l  variables 

defined by : 

r*  0o_ /Co 
= ,l-K" v"K' , /K  

H* 
12= 

(8  

where K is the permeabili ty of the porous me- 

dium. Tile non-d imens iona l  parameters for the 

ratio of the effective viscosity of tile porous layer 

to the viscosity of the fluid ( R . ) ,  Darcy num- 

ber (Da) and Forchheimer number  ( F )  defined 

by :  

R .  = #~:s D a =  K 
/1 R2o 

{ R4o c~o t - ~*x* / 
F =  

4 K : ?  

(9) 

tile momentum equations ['or the fluid (Eq. 1)) 

and porous (Eq. (31)) regions become 

d2u 1 du  
b -- Da 

d? 2 ~ d? 
10) 

dZu I du  
4 

d~ "2 ~ d~ 
1 ] 2 

U= R ,  D a i F u  - l )  R~ 
l i)  

For the case of a vanishing permeability, K = O  

(or Da=O),  the velocity in the porous region 

is equal to zero from Eq. (3). At the limit of 

Da ~ o o  Eq. (3/ has the same form as the mo- 

mentum equation in the fluid region except the 
effective viscosity. 
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If R ,  = 1 and F = 0 ,  we can obtain an analytic 
solution. The solution for Case I becomes (Ethier 
and Kamm, 1989) 

u=Da[A~-P2/41 fluid region (12) 

u=DaEI+B~Io(P)+B2Ko(P)] porous region (13) 

Here, I0 and /~  are modified Bessel functions 
of the first and second kind of order zero. The 
constants A1, BI, and Bz are given as : 

A I = I + t ~ a / 4 + B I I o ( R )  + B2K0 (R) (14) 

K~(/~) + (/?/2) Ko(Ro) 
B~= Io(/~o)K~(/~) +Ko(/~o)/,(/~) (15) 

11 (R)  - (/~/2) Io (/~0) 
/32= Io(/~o)K~(/~) +Ko(/~0)Ii(/~) (16) 

where/1 and KI are modified Bessel functions of 
the first and second kind of order one. 

For the Case II, we can obtain the velocity 
profile solution for Ru = l  and F = 0 ,  

u=Oa~Rao-~Z]/4+Ct ln(P//~o) fluid region (17) 

Um=~2ofooR°U*r*dr * 
(22) 

2 foROU, T , r , d r  Tm = R2 ° Um 

the energy equations become 

t r d 2 0 .  1 dO1 ^ 
Nu L drTrZ + r d T - J  = - u  fluid region (23) 

l Fd20,  I d O l  A l 
Xu L d ~ - r a ± T d T - j = - U R 7  porous region (124) 

in the constant wall heat flux case. Here, R ~ =  
kel / /k  represents the ratio of effective thermal 
conductivity of the porous layer to the thermal 
conductivity of the fluid. For constant wall tem- 
perature cases, the non-dimensional temperature 
is multiplied into the right hand sides of Eqs. 
(23) and (24). 

I F d Z O ,  l dO7 ^~ 
Nu LTP/*7WJ fluid region (25) 

1 [ d 2 0 ,  1 dO] ^,, 1 
Nu [~75---~ . . . .  r dr J uv--R~ porous region (26) 

u=DaE1 +D~I0(~) ] porous region (18) 

where 

91 

C,=Dat~[BxI I ( t~)  + / ? / 2 ]  (19) 

(/~0 z_/~2)/4-1 +/~z In (l~//~o)/2 
(20) 

Io(R) - ~ f i ( R ) I n  (/?//~'o) 

If  Ru=#l or F#=0, we are unable to obtain an 
analytic solution, and therefore perform a nu- 
merical approach. Equations (12) -- (20) are also 
used to verify the accuracy of the finite difference 

scheme. 
By introducing the non-dimensional radius 

( r ) ,  velocity (~) ,  temperature (0) and Nusselt 
number (Nu)  given by 

~'* ^ U* 
~ - -  O - - - -  Y ~ R o "  u Rm' 

2Ro qw 
N u =  k T w - T m  

T * - T ~  
T ~ -  7'~ ' 

(21) 

where average velocity um and average tempera- 
ture Zm are defined by 

Equations (23)--(26) must be solved via the 
following boundary conditions 

dO r=O 0 ]r=x=0 and d r -  = 0  (27) 

The solution procedure adopted in our study 
begins with a trial value for Nu,  then locates the 
value satisfying the heat flux matching condi- 
tion (7), the boundary conditions (27), and the 
compatibility condition 

fo x 1 (28) 8r d r  = 2 

Notice that for the constant wall temperature 
case, the boundary condition (Eq. (27)) leads to 
the trivial solution 8=0 .  This can be avoided by 
writing an expression for the temperature at the 
first interior node near the wall surface as a func- 
tion of N u  via the following discretized compati- 
bility condition (Nield et al., 1996): 

dO 
N u  = - 2  ~ ; -  r = l  (29) 
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3. Numerica l  

Method and Procedure 

The governing Eqs. (10), (11), and (23) ~ (26) 

are solved via a second-order  finite difference 

scheme, discretized in the r -d i rec t ion .  Simpson's  

integration method is applied to solve the in- 

tegrals appearing in the compatibi l i ty  condi t ion 

(Eq. (28)) and in the definition of average ve- 

locity and temperature (Eq. (22)).  

We tested the accuracy of our  second-order  

finite difference scheme through a comparison 

with the exact solut ion for R p =  I and F = 0 ,  as 

0.30 

. . . . . . . .  Calculation 
0.25 ~ • Exact Solution 

*x 0.20 
Z~ - ~ - o ~  • " l ~ .  ~-~,, ,  ~, Da = 100 

0 , 0  

Da=10 ~ " ~ \ • , ~  ~N~ 

005. % 

r =  r ' / R  o 
(a) 

0.30 

" - -- Calculation 
,---, 0.251 -tr-e.4l 11~O_. I • Exact Solution 

q~ o O O_ O "I"I~._ 

0 .20-  • •-t~':~-~o 'l,,. - Da=100 

0.15 - ~ ~ '~I .  

l[ 0.05010 q~o_~ o • • • oo ~ ~ qp- o. o ~ ~  I -  l~m'\°-~°'t" ~ . "  

ooo-- : : : ' : ' - -  : r -  - " - t q  
0.6 i.o 

Fig. 2 

r = r ' / R  o 

(b) 

Velocity profiles for the constant wall heat 
flux case for F = O  and R u = l :  (a) Case I 
(R/Ro=0.8) and (b) Case lI (R/Ro=0.5) 

shown in Fig. 2. Figure 2(a) shows the velocity 

profile for Case I for R/Ro=0.8 .  Figure 2(b) 

shows the velocity profile for Case II for R / R o =  

0.5. These figures confirm that our  numerical  

scheme predicts the velocity profile accurately. To 

test our numerical  scheme for the energy equa- 

tion, we calculated the l imiting case of the tube 

with pure fluid, i.e., R ~ =  I, F : 0 ,  and Da ~ ~ .  

We obtained N u  of 4.36 and 3.66 for the cons- 

tant wall heat flux and constant  wall tempera- 

ture cases, respectively. We also calculated the 

limiting case of a tube filled with porous media, 

i.e., R , : I ,  F = 0 ,  and Da ~ O. Our values for 

N u  converge to 8.00 and 5.78 for the constant  

wall heat flux and for the constant  wall tempera- 

ture cases, respectively, demonstrat ing the accura- 

cy of our  scheme. 

4. Results  and Discuss ion  

The effects of physical parameters, including 

Da, F,  R , ,  Rk, as well as geometric parameters, 

such as the porous layer thickness and the ar- 

rangement of the layer, which were of special 

interest, were investigated. 

Figure 2 demonstrates that the presence of the 

porous layer causes the fluid velocity to decrease. 

This effect becomes more remarkable as the Da 

becomes smaller, as smaller Da corresponds to 

smaller permeabili ty and hence less flow for a 

given pressure gradient. Although both configura- 

tions, Case I (Fig. 2(a))  and Case 11 (Fig. 2 (b ) ) ,  

show quali tat ively similar behavior at larger Da, 

the effects of the arrangement  of the porous layer 

on the velocity profile are more significant as Da 

decreases. The temperature profiles for Cases ! 

and II are shown in Fig. 3. The temperature 

gradient at the pipe wall is greater for Case I! 

(Fig. 3(b))  as compared to Case 1 (Fig. 3(a))  

for given Da. The temperature gradient becomes 

increasingly steep as the Da decreases, making 

the N u  for the Case II greater than that for 

Case l, as shown in Fig. 4. This  demonstrates 

the dependence of N u  on the porous layer confi- 

guration. 

The most noticeable fact in Case II (Fig. 4 (b) )  

is the existence of maximum Nu.  This is contrary 
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2 .00  

[._~ 1 . 5 0  ; . . . .  - ~ ' ~ . .  

b e  "-.  ~-2]: D a =  100 

*~'~ D a  = 10 ~' " ":~,'~ D a  = 10 ~*~ 

¢:~ 0 .50  

",%1 I o.O%~o , , , , , , i , ~  
• 0.2  0 .4  0 .6  0 .8  1 . 0  

r = r:/R o 

(a) 

2.0( 

._. 1.5o " " " L  " " - - ~  Da = Io" 

D. :,oo" ""\"\'m L\ 
0 .50  ~ , ~  

0"00010 ' 0!2 0!4' ' ' 0 ! 6 ' '  0.8 1.0 

r = r ' / R  0 

! b )  

Fig. 3 Temperature profiles for the coustant wall 

heat flux case |or F = 0  : (a) Case I (R/R0 = 

0.8) and (b) Case II (R/Re=0.5)  

to the case !, which possesses a min imum N u  

(Fig. 4 ( a ) ) .  N u  for Case Ii is larger for all values 

of  Da and thickness of  the porous  layer, in 

contrast  to Case I, due to the relatively srnall 

temperature difference ( T ~ -  Tin). For  Case 1, 

Poul ikakos  and Kazmierczak (1987) provide an 

explanat ion  for N u  dependence  on the porous  

layer thickness• Similar rat ionale is appl icable  to 

Case I1. As the thickness of  the porous  layer 

increases, the flow rate in the pipe decreases, and 

hence both Tw and Tm increase since the wall 

heat flux remains constant .  The increasing rates of  

Tw and Tin, however,  depend on the thickness 

of  the porous  region. When the thickness of  the 

porous  layer is small, the average temperature  is 

9 .0  
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4 0  
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2O 
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i I , , i I , i , I h t I , 

0 .2  0 .4  0 .6  0 .8  1.0 
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(a) 

10 

%0 

R/Ro=O : pure  f lu id  (no p o r o u s  layer)  
R / R . = I  : fu l ly  p o r o u s  

D a  = I0  +" 
D a  = I 0 
Da = I0  2 

D a  = 10- '  
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7 

I I I I 

0 .2  0 4  0 .6  0 8  

R/R o 

(b) 

Fig. 4 

1 . 0  

,o F 0 .0  

r -1%1o 

D a  = l 0  n 
- D a  = 1 0  - ~  

- D a  = 1 0  - 2  

D a  = I0  ~ 
, . . . .  D a  = I 0 - 4  

~'.',, . . . .  D a  = ] 0 -~ 
77 i 'i 

\ - : _ +- 

- R /Ro=0  : fu l ly  p o r o u s  
R / R o = l  : pt l re  f l u id  (no  p o r o u s  layer)  

0 . 2  0 . 4  0 . 6  0 .8  1.0 

R/R o 

tc) 

Effect of porous layer thickness on Nusselt 

nulnber for F = 0 :  (a) Case 1 with constant 

,,','all heat flux, (b) Case 11 with constant wall 

heat flux, and (c) Case I with constant wall 

temperature 
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affected significantly by the existence of  the layer, 8.0, 

and, therefore, Tm increases more rapidly than 

Tw as the porous layer thickness increases. As a 7.0 

result, the temperature difference ( T w - T i n )  de- 

creases, which results in the increase of  the Nu 6.0 

as compared  to the porous layer free case. The  = 
Z 

average temperature rise becomes more remark- 
5 . 0  

able up to a critical thickness of  the layer. U p o n  

further increasing of  the layer thickness, how- 
4 . 0  

ever, Tm has weaker dependence on the thick- 

ness, hence the temperature difference ( T w -  Tin) 
increases after the critical thickness of  the layer 3"91 

has been reached and, as a result, Nu begins to 

decrease. Not ice  that when the pipe is fully filled 

with a porous medium ( R / R o = I ) ,  Nu  is 8.00 
6 . 0  

(Nield and Bejan, 1992) as Da--,O. Note  also 

Nu becomes the we l l - known  value of  4.36 

(Bejan, 1995) as Da --~ oo for fully developed 5.0 

pipe flow. As expected, the effect of  the porous 

layer diminishes as Da increases, i.e., permea- 4.0 

bility increases. The  maximum value of  Nu shifts 

to the left as Da increases. This  result implies 3.o 

that the critical thickness of  the porous layer, 

where Tm begins to increase slower than Tw, 2.o 

becomes smaller  for higher permeabil i ty  porous 

media. 

Figure  4(c) illustrates Nu for Case I with cons- 1'9( 

tant wall temperature boundary  condit ion.  Nu is 

generally smaller  than for the constant- f lux boun-  

dary case. As shown in Fig. 4(c) ,  the dependence lO.O 

of  Nu on the porous  layer thickness and Da for 

the constant wall temperature case is qual i tat ively 9.o 

similar  to that of  the constant wall  heat flux case. 8.0 

As a result, this trend is expected to cont inue for 7.0 
the other  parameters used. We investigated the 

effects of  various parameters for the constant wall  ~ 6.0 

heat flux case. 5.0 

The effect of  F for various Da with Ru= 1 is 
4 . 0  

shown in Fig. 5. In accord with the asymptotic 

result, as shown in Fig. 5 (a), Nu shows a tend- 3.0 

ency toward the slug flow value of  8.00 for the 2.~ 

fully porous  layer case. Here, Nu increases with 

F .  However ,  the N u  dependence on Da be- 

comes smaller  as F increases. The  values of  Nu Fig. 5 

in Case II (R/Ro=0.5) are larger than those of  

the fu l ly-porous  case for all values of  Da and 

F ,  and the difference in Nu becomes significant 

. . . . .  4 . /  . . . . .  D a  = I 0  +t 

- - - . . ~ - = - ~ J  - - - D a  = 10 "° 

. . . . . . . .  D a  = 10  -1 
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1 0  q 1 0  ° l01  10  2 1 0  ~ 10"  l 0  ~ 1 0  n ' i  

F 
(a) 

. . . . .  Da  = 10  ÷z 

- - Da  = 10  ÷~ 

. . . . . . .  Da  = I 0 ~ 

. . . . . .  Da=  10  - I  

. . . . . .  D a  = 10 -2 

i ~ - ' - ' ~ °  - - ~  . . . . .  ~ " ' . ~ .  - . . . . .  D a  = 10 -s 

%-2 .............................................................. ~o" lo ° ~o' ~o ~ t o  ~ lo  ~ ~o" 1o" 

F 

(b) 

t . / . - / /  

. ~ _ . ~  . . . . .  D a  ffi 10 ~' 

=== . . . . . . . .  ~ . . . . . .  D a  = 10 +° 

. . . . . .  D a  = l 0  -~ 

. . . . . . . . .  D a  = 10 -~ 

. . . . . . . . . .  D a  = 10  -3 
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as Da decreases. However ,  this is just a coinci-  0.12 

dence since N u  depends not only on Da but also 

on the thickness of  the porous layer, as shown in 

Fig. 4. It is worth noting that N u  decreases with ~-~ 0.08 

permeabil i ty  for Case 1 with R/Ro=0.5 (Fig. 5 t 
(b)) ,  which is the reverse of  the trend shown ~-o 0.06 

in the fully porous  case (Fig. 5 (a)) and Case II 

with R/Ro=0.5 (Fig. 5 (c ) ) .  -"~ 0.04 

The effect o f  F in Fig. 6 is qual i tat ively equiv- 

alent to decreasing the permeabil i ty of  the porous 0.02 

layer (i.e. shown in Fig. 2). As F increases the 0.0~ 

velocity profiles are flattened, as shown in Fig. 6. 

However ,  the shape of  the temperature distri- 

but ion does not always sharpen as F increases. 

Rather,  it depends on the geometry and porous 
0 . 2 0  

layer thickness as shown in Fig. 7. For  Case l 

with R/Ro=0.5 (Fig. 7 ( b ) ) ,  the increase of  F 

causes a flattening, not a sharpening, of  the tem- 

perature distr ibut ion shape, contrary to the other  

cases (Figs. 7(a) and (c)) .  However ,  for the fully 

porous  layer case, an increase in F always results 

in sharpening of  the temperature profiles for the 

parameter  range we studied, which is the result 

obtained by Nield et a1.(1996). 

Figure  8 shows the effect of  F on N u  for 

R u = 0 . 1 ,  1 and I0, respectively. Fo r  all values of  

R,,  N u  increases with F for the fully porous 

case and Case II (R/Ro=0.5) as shown in Figs. 

8(a) and (c). This is because an increase in F 

causes the flow to be more s lug- type ;  hence the 0.18 

temperature difference decreases resulting in an 

increase in Nu. In the Case I (R/Ro=0.5) ,  how- 

ever, N u  decreases as the drag increases. The  

explanat ion for this result is given by examining 

the effect of  porous layer on Tw. When the porous  

layer is attached at the wall, it is expected that 

the wall  temperature will be affected more signi- 

ficantly than Tm by the existence of  a porous  

layer. As a result, the temperature difference in- 

creases, and thus Nu decreases. 

Predict ing the effect of  the R~, on N u  is not 

straightforward. As Ru varies from 1 to 10, Nu 
increases for all values of  F for the fully porous 

case (Fig. 8 (a ) ) ,  while there is no such trend in Fig. 6 

Case I (R/Ro=0.5) and Case II (R/Ro=0.5),  
as shown in Figs. 8(b) and (c). Generally,  the 

velocity profile varies considerably with R .  as 
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p lo t t ed  in Fig .  9, bu t  the  t e m p e r a t u r e  p rof i l e s  

are  no t  s ign i f i can t ly  af fec ted  by /?~, as is s h o w n  

in Fig .  10. F o r  R~:4: l, t he  ve loc i ty  p ro f i l e s  s h o w  

s teep  c h a n g e s  at R / R 0 = 0 . 5  due  to the  shea r  stress 

m a t c h i n g  c o n d i t i o n  (Eq.  ( 7 ) ) .  T h e  s h e a r  ra te  is 

no t  c o n t i n u o u s ,  a l t h o u g h  the  shea r  s t ress  is c o n -  

t i n u o u s  at  R / R 0 = 0 . 5 .  T h e  d e p e n d e n c e  o f  N u  

o n  R~ a n d  the  t h i cknes s  o f  the  p o r o u s  layer,  as 

wel l  as on  Da, are  s h o w n  in Fig .  11, w h i c h  

d e m o n s t r a t e s  tha t  N u  does  no t  d e p e n d  on  R~ 

d i rec t ly  for  e i ther  C a s e  I o r  C a s e  II. 

T h e  effect  o f  R~ on  N u  is p l o t t e d  in Figs .  12 

(a) a n d  (b ) ,  w h i c h  s h o w  tha t  N u  increases  w i th  

R~, and  N u  l inea r ly  d e p e n d s  on  R~ for  the  fu l ly -  

p o r o u s  case.  As  the  t h i cknes s  o f  the  p o r o u s  layer  

10 

9 

8 

7 

6 
.-..i 

Z ~ 
4 

3 

2 

1 

70 

6° f 
50 

R~, = 10 -~ 
- - - R~, = l 0  ° 

R~, = 10'  

! - ~ D a = l . 0  ~ !  

'\\ _..__.._ ~.~._~.~-~- 

\ ~ ~  - ~  D a  = l0 -s 

0.2 0.4 0.6 0.8 1.0 
R / R  o 

(a) 

I R, = 10 -j ::~ 

. . . .  R =10 ° i,: i 
......... R = I0 '  I 

{/ 

:/ 

D a  = tO -~ . /  
¢ 

i t  

. - S  
/ " ~ D a  = 1.0 

00'.0 . . . .  012 . . . .  014 . . . .  01.6 . . . .  0'.8 . . . .  1.0 

R / R  o 

(b) 
Effect o f  Da and R ,  on N u  for constant  

wall heat flux for F = I 0 3 :  (a) Case 1 and 

(b) Case II  

Z 

40 

30 

20 

l0 

F i g .  1 1  

10 
- - -  R/Ro = 0.0 

9 . . . . . . .  R./Ro = 0.l 
...... WRo=0.3 

s . . . . .  w ~ = 0 . 5  S /  • 
...... R/Ro = 0.7 ~ ~-~ 
. . . . . . . . . .  R/Ro = 0.9 ~ ~ ¢  

7 

6 . . . . . . . . . .  R/Ro = 1.0 ..d/.~'- ~ ~ -  

5 ~ 5 / / -  . . . . . .  
¢ ¢--41.--~H - - -  2 2 =- ~ ¢ ¢ - - 4 1 . - - ~ H  "=O-~II-S6 ¢ ¢ ¢ ¢ ¢ 

4 . ~  

2 / / / / ~  
/ / / R / R o = 0  : fully porous 

1 ~ ' u i d  (no porous layer) 

n , f i I , , i , I ' ' r , I ~ ~ 

"0.0 0.5 1'.0 1.5 2.0 
Rk = keee /k  

(al 

1o - - R ~ = o . o  | 

9 ............ wr~=o.1  A ,  
- R / I ~  = 0 .3  ~t¢ I 

s R / R ~ = 0 . 5  . / ¢  I 
. . . . . . . .  R/Ru = 0"7 / e / -  ~ " t  

r  =o9 . : . : -  i 
6 i~--.e . . . . . . . . . .  . f 

3 / / ' / / . /  

2 / /  . / /  

1 ~ R/R0=I : fully porous ° porous layer) 
~ j  i , i I i i i I i i i i [ ~ i i 

0.5 1.0 1.5 2.0 

1~ = k e r r / k  

(b) 

Fig. 12 Effect o f  R ,  on N u  for constant  wall 

heat flux for F = 0 ,  D a = 0 . 1 ,  and R ~ = l :  

(a) Case I and (b) Case II 

2.0 

.~. f " " ~ - ~ 7 ~ -  inner half porous 

~ v . -~\ 

- R~=OS \\ 

-- R~=rs 

-'O.0 0.2 0.4 0.6 0.8 1.0 
r = r'n% 

Fig. 13 Effect o f  Rk on the temperature profiles for 

constant  wall heat  flux for F = 0 ,  D a = 0 . 1 ,  

and Rt, = l 



1594 Woo Tae Kim, Ki Hyuck Hong, Myung S. Jhon, John G. VanOsdol and Duane H. Smith 

decreases, the dependence of N u  on /~k becomes 

nonlinear. It is worth noting that for the half 

porous layer (R/Ro=0.5),  Nu  of Case II is 

larger than of the Case 1 for R ~ < I .  However, 

for R k > l ,  N u  of Case I is greater than that of 

Case II. For / ~ <  1, the average temperature of 

Case II is larger, as shown in Fig. 13, and thus 

the (Tw-Tin)  becomes smaller. Therefore, N u  

for Case 1I is larger than the Nu for Case I. The 

reverse trend appears for R~ >1. 

5. Conclusions 

The forced convection in a circular pipe with a 

partially filled porous medium was numerically 

investigated. Two types of configurations (inner 

and outer porous layer denoted as Cases I and II) 

were investigated for various parameters, includ- 

ing the Darcy number, the thickness of porous 

layer, and the ratio of the viscosity & thermal 

conductivity of the porous medium to those of the 

fluid. The results are summarized as follows: 

(1) N u  dependence on the thickness of the 

porous medium is not uniform. There exists a 

critical porous layer thickness where the N u  

reaches a maximum for Case II and reaches a 

minimum for Case I for any Darcy number. 

(2) Nu increases with Forchheimer number 

for the fully porous case and Case II (R /R0=0 .  

5). For the Case l (R/R0=0.5) ,  Nu decreases as 

Forchheimer number increases. 

(3) N u  increases with the viscosity ratio. The 

effect of the viscosity ratio on the N u  is not 

simple, since Nu depends also on Darcy number, 

the porous layer thickness, the configuration of 

the layer, as well as on the viscosity ratio. 

(4) For a given porous layer thickness, the 

value of Nu depends on the type of porous layer 

configuration. 
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